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We consider the final motions of Hamiltonian systems under the conditions of existence 
of the energy integral. Specifically, we consider natural conservative systems with k 
degrees of freedom, Liouville-type systems, homogeneous systems, and system which ad- 
mit of a group of similarity transformations. 

Imposing certain conditions on the potentials of the (not necessarily Newtonian) force 
fields, we obtain certain integrals and quasi-integrals of the equations of motion which 
contain secular terms. 

A generalization of the Lagrange-Jacobi formula familiar in celestial mechanics is 
developed. This generalization turns out to be reducible to a nonlinear first-order differ- 

ential equation by means of a certain invariant relation and the so-called configuration 
constant G . The resulting equation is analyzed qualitatively and the most important cases 
of its integration are pointed out. 

We also consider the conditions for stationary and quasi-stationary conservative sys- 
tems as is done in the dynamics of stellar systems. 

One of the problems of the qualitative theory of dynamic systems - the problem of 
final motions - arose in celestial mechanics in connection with studies of the Lagrange 
stability of the Solar System. 

The problem was originally posed in terms of the changes in the relative distances 
between R gravitating point masses as the time f increases (decreases)without limit. 

Studies on this problem were begun by Lagrange in his “Essai sur la probldme des trois 

corps” [l]. 
The first theorems on the final motions of n bodies gravitating according to an arbi- 

trary law were obtained by Jacobi [Z] in connection with his studies of the stability of the 

Solar System. 
Further studies of final motions were subsequently conducted largely in connection with 

the three-body problem. Chazy [3 and 41 attempted to analyze and classify these motions. 
A general survey of final motions in the three-body problem will be found in [5]. Final 

motions in the n-body problem were studied by Khil’mi [6]. 
We shall consider the final motions of Hamiltonian systems under the condition of 

existence of the energy integral. The problem reduces to the investigation of the beha- 

vior of the representing point fi (q) in tile k -dimensional space of configurations Ek 

as t 4 f 30. 
As in stellar systems dynamics, the problem of the final motions of conservative sys- 

tems can be reduced to the study of two functions. One of these functions, R = ZpiQj 
is a bilinear form of canonical variables ; the other function, / , is some function of the 
generalized coordinates qj whose structure is similar to the expression for the moment 
of inertia of the system ; this enables us to call it the “generalized mqment of inertia”. 
Specifically, for a free system of n gravitating point masses the value of / (in Cartesian 
coordinates) coincides exactly with tile moment of inertia of the system. 

1. Formulation of the problem and batic relation:. Let some con- 
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servative system whose configuration is defined at eacil instauc 

ordinates qj (j = 1, ii!,..., k) move in a force field with the 

assume that this potential is a homogeneous function of degree 

coordinates qj , so that V (1.4) = h”V (q). 

t by k generalized co- 

potential V (q) . We 

n of the generalized 

We propose to consider the motion of the representing point N (q) of the system in 

the k-dimensional space of configurations Ekvilose metric is defined in Synge’s termi- 

nology [7] by the kinematic linear element 
Ir 

(1.1) 
i, j=l 

Here T is the kinetic energy of the system and ail (q) are some functions of the coor- 

dinates qj (j = I, ii’,..., k) which can be constants in a special case. 

Let us write out Hamilton’s equations, 

dqj _ tt~ 
-ix-d&y 

dPj _ aH 
dt--agj (;=1.-3,..., k) (1.2) 

Multiplying these equations by pj and q, respectively, adding them together, and sum- 

ming over the subscript j . we obtain 

$ i Piqj F i g Pj - i,$l 2 4j 
i. j=l 1. j=l I I 

(1.3) 

Following Poincare [Xl, we introduce the function R* (Poincark himself denotes this 

function simply by Q without the asterisk) by way of the relation 

dc-2’ 
- = H(p, q) dt 

(i-4) 

Combining Expressions (1.3) and (1.4) and noting that alf / apt = aT* f a&, where 

T*(q, p) is the associated expression for the kinetic energy, we obtain 

(1.5) 

Since, by virtue of (1. l), the kinetic energy T (q, q’) of the system is a positive-defi- 

nite quadratic form of the generalized velocities qj’it follows that the associated expres- 

sion for the kinetic energy T* (q, p) is also a positive-definite quadratic form of the 

generalized impulses p1 = aT / aq ,’ 

T(q, a’) = + i 

k (1.6) 
. . 

a~~ (q) Qi’Qj’t T* (Q* PI = f 1. L1 2 a”(q)p,pj (OiJ =J’) 
i. J=l 

Here (0”) = (Oij)-’ is the inverse of the matrix (ail), 

Making use of Euler’s theorem on homogeneous functions and introducing the Lagran- 

gian L, we transform Expression (1.5) into 

d ( SPjqj --$I*) = Ldt (lc==--_ (i-7) 
This result means that as the representing point N (4) of tile system moves along a 

straight path (in the space E’ metrized according to (1. l)), the elementary Hamiltonian 

operation Ldt represents the total differential of the difference 9 - 62*. 

2. Natural :yatsm8. As we know, the Hamiltonian H @, 4) for such systems 

can be represented as the sum of the kinetic and potential energies, i. e. as 
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Making use of the energy integral H (p, q) = h and noting that T* (&p) is a homo- 

geneous quadratic form in the generalized impulses ~1, ,and v (4) a homogeneous func- 
tion of degree ?& of the generalized coordinates qj, we apply Euler’s theorem on homo- 
geneous functions to transform (1.3) and (1.4) into 

h (2-i) 
dQ 
dl= -dZ+(2+~)T*- ~“r-IQj,$ =(i-_n)h+nT*-i aTIe 

j-1 "j j-1 aqi 

Let us assume that the associated expression for the kinetic energy T* (q, p) is a 
homogeneous function of degree (- V) of the generalized coordinates qi. By virtue of 
Euler’s theorem on homogeneous functions we obtain 

dQ 
-= 
dt 

-nil + (2 + n + v) T*, ‘$ = (I- n)h + (n + v) T+ (2.2) 

Summing, we find that 

-$(n+n*)=(i-2n)h+2(l+n+v)T* (2.3) 

T he ore m 2.1. Let a conservative system move in a force field whose potential 

energy v (q) is a homogeneous function of degree n of the generalized coordinates qJ. 

Now let the associated expression of the kinetic energy T* (q, p) be a quadratic form 

in the generalized impulses pj and a homogeneous function of degree (- V) in the gene- 

ralized coordinates Qp 

Then, if (1 -j- n -j-V) = 0 it follows that there exists a relation of the form 

$2. = -((p1q1 +...+pA&) +(I -2n)M +const (2.4) 

which we call a “quasi-integral”, since the function Q* itself is defined by a differential 

relation. 
The existence of quasi-integral (2.4) which can be resolved into three components: 

the function Q*, the bilinear form R , and the secular term (1 - 2n) ht, follows directly 

from the integration of (2.3). 
The condition 1 + n + v = 0 is fulfilled, for example, when the system consists of an 

arbitrary number of point masses gravitating in accordance with Newton’s law. In this 

case we have v = 0, n = - 1 , so that the conditions of Theorem 2.1 are fulfilled. By 
virtue of (2.4), we infer that in this case 

Q* = - bwn + l . . + ma) + 3ht + amst (2.5) 

which coincides with the result obtained by Poincark in [8]. 

Corollary 2.1. Let the conditions of Theorem 2.1 be fulfilled. Then for hyper- 

bolic (h > 0) and elliptic (h < 0) motions the sum (a* + 9) either increases or 

decreases monotonically with the time t , depending on sign (1 - 2n) h. 
In the case of parabolic motion (h = 0) the secular term vanishes and the conserva- 

tion law &* + Q = con& holds. 
Theorem 2.2. Let the conditions of Theorem 2.1 concerning the homogeneity of 

the associated expression for the kinetic energy T* (q, p) and of the potential energy 

v (q) be fulfilled. 
Then, if the homogeneity exponents (- V) and tr satisfy the relation (2 $ n -j- 

+ v) = 0, there exists an integral which can be resolved into the bilinear form 9 and 

the secular term (r&f) , 
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& 

Pi% = -- tit-$ COnSt (Pj = 2 “Q tq) 9f3 (2.6) 
j=l f 

This result follows directly from (8.2) and (1.5). Integral (2.6) can be written in an- 

other form with the aid of the energy integral. This yields 

i afj(P)qjq;+R1(+ $ ufj (q) q;q; + I’ (q) 
> 

= coast (2.7) 

i, j=l 1. I==1 

which coincides with the familiar result [9]. 

Corollary 8.2. Let the conditions of Theorem 2.2 be fulfilled. Then for hyper- 

bolic (h > 0) and elliptic& ( 0) motions the bilinear form x:ppj either increases or 
decreases monotonically with the time f , depending on sign (&) . I-fence, in final mo- 
tion as t -+ 03 the function a @ (t), q (t)) increases without limit in absolute value. 

For parabolic motions (h = 0) the secular term (nhl) vanishes and the conservation 

law $2 @, q) = const holds. 
Hence, there exists an integral of the form 

i “ti (Q) qjq* = const (2.8) 
i, i-1 

Theo r e m ‘L. 3. Let the conditions of Theorem 0.1 concerning the homogeneity of 
the associated expression for the kinetic energy T* (q, p) and of the potential energy 
v () he fulfilled. 

Then,if the homogeneity exponents (- v) and n satisfy the relation r& + v = 0, there 

exists a quasi-integral of the form 

&* = (1 - n )ht + const (h * 0) (2.9) 

The presence of Jhe secular term (! - PZ) ht means that in the final motion as t --,x) 
the function increases without limit in absolute value. 

The above result follows directly from (2.2). In particular, for a Newtonian gravita- 

tional force field we have n = - 1, SO that Q* = 2ht + const 

The ore m 2.4. Let the degrees of homogeneity of the potential energy v (q) and of 

the associated expression for the kinetic energy T* (q, p) in the generalized coordi- 
nates qJ be Iz and - V = 2. 

Then the bilinear form @& is a monotonic function of the time t in those domains 
G of the space E* where the potential energy V (q) is of strictly fixed sign (V > 0 or 

v < 0). 
In order to see this we need merely use the energy integral and the condition 2+ v = 0 

to transform (2.2) into 
d0 / dt = - nV (q) (2.10) 

Thus, if sign (~1’) > 0, then dQ I dt < 0 , and decreses monotonically ; if 

sign (nV) < 0 we have dQ / dl > 0 and Q increases monotonically. 
In particular, for elliptic motions (Jz < 0) the potential energytr (q) t h - T (q, q’)c 

< 0 , so that 9 @, qf is a monotonically increasing or monotonically decreasing function 
of the time t. 

For parabolic motions (h = Oj the bilinear form Q assumes stationary values at the 
stopping points (T = 0). In any domain C not containing a stopping point we have 
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V(q) = - T lg. q-1 < 0 9 so that Q is also a monotonic function of the time t. 
Now let us turn to (2.2) and establish the necessary conditions for the existence of 

periodic trajectories as the phase point N* (PC q) moves in the %-dimensional phase 
space Ep’. 

Introducing the average value of the kinetic energy (T (t)) over the finite time inter- 
val C, then integrating (2.2), we obtain 

Q =(-nh +(2 +n +v) (T)) t +Q, 
cc?* = ((I - n) h +b +v) (T:)t +Q,* (2.11) 

Here Q,, = a (0) and R*, = Q* (0) are constants, and 

Let the phase point N* (p, q) for a given value of the constant energy h execute 
some periodic motion with the period T in the phase space Et” ; let this motion be such 
that 52 (T) = R (0). Then, by (2. ll), 

CT W: = 2 .“,“+ y (h # 0) (2.13) 

Making use of the energy integral, we readily obtain from this a generalization of the 
familiar theorem on the virial: (2 .+ v) ( T ) = n (V). 

Let us turn to the problem of existence of periodic motions as determined by the values 
of the parameters h, v and n. 

1) Let 2 +V +n=O. Here periodic trajectories cannot exist for hyperbolic (h > 0) 
and elliptic (h < 0) motions. In the case of parabolic motion (h = 0) periodic trajec- 
tories may occur ; moreover, the bilinear form is conserved, i.e. 52 @, q) = Q,. 

2) Let 2 + v + n > 0. The necessary (but not sufficient) condition for the existence 
of periodic trajectories in the case of hyperbolic (h > 0) and elliptic (h < 0) motions 
is the condition sign (nh) > 0. P eriodic trajectories cannot exist for parabolic motion 

(h = 0). 
3) Let 2 + V + n < 0. The necessary (but not sufficient) condition for the existence 

of periodic trajectories in the case of hyperbolic (h > 0) and elliptic (h < 0) motions 

is sign (&) < 0. Periodic trajectories cannot exist for parabolic motions (h = 0). 
It is easy to yerify these statements with the aid of (2.11) and (2.13). 

In the general case of periodic motions 62. (i) is not a single-valued function of the 

variable f. 
In fact, in traversing a periodic trajectory the value of hl*changes by the amount a 

during the period o (by virtue of (2.13) and (2. ll)).This quantity, which we call the 

“cyclical constant”, is given by 
2 

Or= -++hT 
Zfvin 

(h#0. ?.=Q*(T)-W(O)) (2.14) 

If2+v- n = 0, then the cyclical constant. a vanishes and Q* becomes a single- 
valued function. As will be shown below, this condition holds in the case of Hamiltonian 
systems which, admit of a one-parameter group of geometric similarity transformations 

of the form 4’ = Q. 
If the motion is parabolic (h = 0) and periodic, then, as we have already shown, it is 

necessarily the case that 2 + n + v = 0. Hence, by virtue of (2. ll), the cyclical con- 

stant here is given by 
a= - 2r<T (4) (h=O) (2.15) 
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For example, let us determine the cyclical constant a when the energy constant h # 0 

and h = 0. 

1. Let us consider Kepler’s problem for a unit mass (m = I) moving in an elliptical 
orbit under action of an attracting center 0 with the Newtonian potential V = - ir, / r 

QA is the reduced mass). Placing the origin at the attracting center 0 and directing the 

t-axis along the line of apsides, we write the Hamiltonian., taking as our generalized 
coordinates the Cartesian coordinates of a point (ql = I, qs = p), 

ff=E(fI 2lMP,tiP,‘)-p/’ (r= vs+ti”) 

Here the associated expression for the kinetic energy T and the potential energy Y 
are homogeneo~ functions of degree v = 0 and n = - f , respectively, in the general- 

ized coordinates. Hence. by virtue of (1.4) we have 

dQ’ z=h-i dHqj=h+&kh-$ 
j=l aqj 

(ZA6) 

where the radius vector r (in accordance with the solution of the two-body problem) is 

given by P 
r= t+ecmf) (P=~(i--cr)) (UT) 

Here a is the major semiaxis of the ellipse, c is the eccentricity. and 6 is the true 

anomaly (the polar angle). 
Integrating (2.16) over a singIe period T and recalling that (by the area integral) 

cdt = Sd%,and that t is given by (2, l?), we obtain 

The integral in the right side of this expression can be computed with the aid of the 

Cauchy residue theorem (this entails the substitution I = cU and conversion to complex 

variables). It turns out that Sn 

s 

cos 6 d% 2m 

0 
(I + e cos %)* = - (1 _ c2)” 

Now, making use of the relations 

E = If; p”o)-_ h ‘L- - p / 20, r 4 2.x,z*f*/ rp 

known to us from the theory of elliptical orbits, we carry out certain simpli~ing opera- 
tions to obtain 2 

a=fir _i +i-_ct i > 

28 
-hr i-_E=3hr 

The same result can be obtained directly from (2.14) by setting v = 0, n = - 1 . 
This yields & = 3hr, which is, in fact, correct, 

2. For the case of parabolic motion (h = 0) we can consider the periodic motion of a 
point of unit mass in a circular orbit under the action of an attracting center with the 

potential V= --Am . From simple physical considerations we infer that II = - 2 , and 
direct computation of the cyclical constant a from (1.4) or (2.15) yields a = - x @A)“*. 

5. Liouvflle~typs systemr. For these systems the kinetic energy T and the 
potential energy k’ are given by [11] 
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k k 

V(I)=&). z vj(clj)* u fQ) = 2 uj t%i) 
respectively. _ 1-1 j-1 

Making use of the familiar method of [ll], we convert from the canonical variables 

~j and pj to the new variables %j and YJ (j = 1, 2,..., k) with the aid of point trans- 
formation (3.2) whose functional determinant D differs from zero, 

(3.2) 

The kinetic energy T’* (%, q) and potential energy v’ (%) in the new variables %J 

and qJ = dT’ / a%J’are given by 

T’* (E, 9) = - (3.3) 
j=l 

k k 

V’ (5) = $QFj ,JZ l”j (Cpj Gj))* I/‘(%) = 2 uj(Vji%j)) 
1=1 j=l 

The above transformation is entirely canonical. so that the transformed Hamiltonian 

H’ (%,@ = 2”” (f, 9) + v’ I%) 

follows from the initial function R @, 9) by way of the substitution of variables 

Qj = Cpj C%j>9 Pj = Vmj’(%j) 9, (mj (Cpj (Ej)) = mj’ (Ej)) 

sothatH@,q)=H’(%,tl)=h. 
Hamilton’s equations (1.2) in the variables fJ and qJ become 

d:. ifs dqj a~ 
$=a: di --Gq (j=i, i!,..., k) (3.4) 

Let UJ ((rJ) and VJ (91) b e homogeneous functions of tire variables qj of degree 1 

and n, respectively, and mj (qj) = ajqjv (v -+ 2 # 0, aj = Wwt) 

By virtue of transformation (3.2) we obtain 

Qj = bj%>e (d=2/f2fv), bj=u)nst) (3.5) 

so that T'* (E, 11) and V’ (j) are homogeneons functions of the variables EJ (j = f , 

2 ,---, k) of degree A = - 310 and n’ = (n - A) 8 , respectively. 
This homogeneity of the functions T’* (&, q) and V (E) in the variables gj is fulfilled 

for all values of v except v = - 2. 

In this exceptional case, when 2 + v = 0, by virtue of (3.2) we obtain Ej = Cj In q.; , 
so that under conversion from the variables qj to Ej (or vice versa) any power function 
ceases to be a power function after the above point transformation. For this reason we 

shall assume from now on that 2 + v # 0. 
Turning to Eqs. (3.4) and proceeding as in Section 1, we recall the degrees of homo- 

geneity of the functions T’* (5, q) and V’ (%) to obtain 

$9’ f%* 9) = - n’h -+ (2 f n’ - A’) T’* p =$ll%:Q) (3.6) 

Let us introduce the function a’*, setting I 

dQ” 
- = N’ (%, ?l) - 

dt 
lx (6% ‘1) = ‘1 
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Making use of the energy integral and recalling the homogeneity of the function 

fl’ (f, q) in the variables Er, we apply Euler’s theorem on homogeneous functions and 
arrive readily at the result dQ‘* 

- =(I 
dt 

- n’)h + (a’- h’) T’*(E, q) (3.7) 
Combinig (3.6) and (3.7) and introducing the Lagrangian 

we. obtain 
L’ (E, E’) = T’ (Et E’) - v’ (f;) 

-$ (0’ - !P) = L’, -$P+ S2’*) = (i-2n’)h +2(i + n’-X’)T’* (3.8) 
These results are analogous to Expressions (1.7) and (‘2..3) for natural systems. 

Theorem 3.1. Let T’* (c, q) and‘V’ (f) be homogeneous functions of the varia- 
bles ci of degree ;.’ = - A0 and n’ = (n - 3.) 0 for Liouville-type system (3.3). 

Then, if 2 -j-n’-- ?.‘=f) (i. e. if 2 +.n +v=O), then there exists an integral of the form 

(El% -!- . -* + E,qr_).+ n’ht = cm-lst (n’ = 2 (n - X) / (2 + v)) (3.9) 
which can be resolved into a bilinear form and a secular term. 

This result follows directly from (3.6) and is analogous to integral (2.6) for natural 

systems, 
C or o 1 I a r y 3.1. If the conditions of Theorem 3.1 are fulfilled, then periodic tra- 

jectories cannot exist for hyperbolic (n > 0) and elliptic (h ( 0) motions ; moreover, 
the bilinear form XEfl, is then a monotonic function of the time t, becoming infinitely 
large in absolute value in the final motion as f - Q . 

We assume here that n + $., i.e. that n’ =#= 0. 
For parabolic motion (h = 0) we have the conservation law R’ (5, q) = conIt, so 

that there exists an integral of the form 

Ij (E) (SJr’ +- g&s* + *..-f- E&l_‘) = eonst (3.10) 
Theorem 3.2. Let the conditions of homogeneity of the functions T’* @, 11) and 

V’ (E) set forth in the condition of the Theorem 3.1 be fulfilled. 

Then, provided 1 + ?l’ - x’ = 0, there esists a quasi-integral resolvable into three 

components, namely the function Q’*, the bilinear form s;“(t, 9) and the secular term 

(f - 2n’)ht; Q’+ + (l&q1 + g2r12 +..,+ Erql) - (I- 2n’) hl = const (3.41) 
This result follows directly from (3. 8) and is analogous to quasi-integral (‘2.4) for 

natural systems. 
Now let us consider Liouville-type systems (3. I) when ml (qj) = Uj = const, and 

UI (91) and ti (%) are, as before. homogeneous functions of the variables qj of degree 
h and ?r , respectively. 

Mence. setting v = 0 and making use of (3.5)‘ we obtain 8 = i, n’ = n- i, 

h’ = - I., qj = L-/g,, so that basic relations (3.6), (3.7) and (3. 8) become 

da’ 
dt= 

_(n--)]~+(2ftl)1”*, ~=.=(i-n+qh+RT’* 

-f- n’*) = (i - 2R +2h)h +2(1 + n)T’* (3.12) 

This means that for R = - i there exists a quasi-integral which is resolvable into 

three terms, namely the function a’*, the bilinear form Q’ (& rl) , and the secular 
term (3 + 2h) kt 

Q’* + G,rll -i- fz qa+*** + b?lk) - (3 + 2A) l2.t = const (3.13) 
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which is a generalization of integral (2.5) obtained by Poincare 183, and becomes the 
latter for h = 0. 

4, Periodic motions, Introducing the average value of the kinetic energy 

( T’* (t) ) over the finite time interval f, on integrating (3.6) and (3.7) we obtain 

Q’(g, q) = (- n’fr + (2 + n’ - X’) ( T’* (t) ,) t + W (0) 
(4.1) 

sZ’* (g, q) = (i - n’) h + (TZ” - I’) (T’* (t))) t + Q’* !O) 

This implies that if periodic motions exist, then it is necessarily the case that 

sign (2 + n’ - A’) = sign (n’lrr) 

Let the phase point of the system execute a periodic motion m theZk-dimensional 
phase space with a period T. such that Q’ (z) = n’ (0). Then, by (4. l), the average 

kinetic energy ( 2” *(T)> over the period T is given by 

(F (1)) = Z+y_l’ (4.2) 

Noting that J,’ = - X8, n’ = (n - h)B, 8 = 2 j (i! +v) , we can use the energy 
integral (T’* (f)) -+ (V’ (r)) = i L to obtain a virial relation of the form 

(2 + v +A) <T‘* (T)> = (n - A) (v’ (T)> (4.3) 

which is a generalization of our earlier relation for natural systems. and becomes the 
latter for h = 0. 

The function n’* is uon-singlevalued in the case of periodic motion and changes 
over the period T by the cyclical coustant CC’ given by 

All the results obtained in Sections 3 and 4 can be extended to systems more general 
(nonintegrable systems in the general case) than Liouville-type systems (3.1) and (3.3). 

Precisely as regards U (q)we need merely require that it be a homogeneous function 

of degree J. of the variables qj, and not necessarily a su~r~sition of homogeneous func- 

tions of the same degree 1 of the form 

U (9) = sor’ -!- azpsa + . . . + rr;iqkf. t"j =ealst) 

as in the case of the Liouville-type systems considered above. 

6. Homogsneou8 ey8tem8, This will be the term applied to systems whose 

potential energy V (q) is a homogenous function of degree n in the variables Qj and 

whose kinetic energy 2’ (q, q’) has the same structure as Liouville-type systems (3.1) , 

provided u (q) E i and mj ((lj) are homogeneous functions of the same degree (which 

we denote by y ) of the variables t& . 
Hence, T (q, q*) and T* (Q, p) are of the form 

Since the generalized impulse j?j = mj (qj) qj’, it follows that, 

Summing over j and noting that ?ttj (a) are homogeneous functions of degree v in 

the variables 41, with the aid of Euler’s theorem on homogeneous functions we obtain 
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(’ = i mj (Oj) qj* ) 
i=l 

(5.2) 

We call the quantity J the “generalized moment of inertia” of the system. In parti- 

cular, for a free system consisting of gravitating point masses the quantity J assumes the 
usual form of the moment of inertia of the system. 

Differentiating Eq. (5.2) and noting that T* (q, p) is a homogeneous function of de- 
gree (- v) in the variables qj, by virtue of (2.1) and (2.2) we obtain 

which is a generalization of the Lagrange-Jacobi equation of celestial mechanics. 
To see this, let’ us consider a free system consisting of N point masses q gravitating 

according; to an arbitrary power law, 

Here & (qj) = rr~ = con& v = 0, qj are the Cartesian coordinates of the point 

“r (I = i, 2, . . .* i$j = i, 2,. . ., 3N) ,so that 

~=v--_h+Z(:!+n)T’ 
dt’ 

(5.4) 

In the case of a Newtonian gravitational force field (n = - 1) this relation yields 

the familiar Lagrange-Jacobi equation [12 and 131. 
It is sometimes expedient to rewrite Eq. (5.3) in a form such that the potential energy 

vappears instead of the kinetic energy T. Making use of the energy integral for this pur- 
pose, we obtain @J 

- = (2 + v)*(h -ml-) P+v+n 
dty m= p+v (5.5) 

T h eor e m 5.1. Let conservative system (5.1) move in a Newtonian. gravitational 

force field (n = - 3) s and let the degree of homogeneity (- v) of the associated 
expression of the kinetic energy T+ (q, p) in the variables qj be smaller than unity 

(- v < 1). The bilinear form XpBj in the case of hyperbolic motions (h > 0) is then 
a monotonicaIly increasing function of the time t. 

In fact, since n = - f , h > 0 , and I $ v > 0, it follows by virtue of (5.3) that 

dLj -- 
dt2 - (:! + v) (h + (1 + v, T) > 0 

Hence, dl f dt is an increasing function. By virtue of (5.2) this implies that Cpjqj is 
also an increasing function. The theorem has been proved. 

C or o 11 a ry 5.1. Theorem 5.1 is also valid for parabolic motions (h = 0) provided 
we assume that the domain of the phase space under consideration does not contain qui- 
escent points or stopping points, 

8. Similar lyctom:, In this category we place Hamiltonian systems invariant 
relative to a group of similarity transformations. 

Let the homogeneous systems considered in Sect. 5 be similar and let them admit of 
a two-parameter group of similarity transformations of the form qj’ = )bgj, 1’ = rt, 
where 3, and T are parameters. Since the kinematic energy T (q, q’) and potential 
energy v (q) are transformable by means of Formulas 

T’ (q’~) = A-WT (q, q’), V’ (q’) = h” v (q) 

it follows that the parameters defining the above similarity transformation are related 
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by an expression [14] of the form 
3.“+- 7-t I== i (6.2) 

and that the new energy constant h’ is related to the initial energy constant Ir by the 

expression h’ = A”h. 
Since J (q) (5.2) is a homogeneous function of degree (V + 2) in the variables Qj, 

it can be transformed into 
J’(q’)=kiV(q) (V-j-2#9) (6.3) 

so that. by (6.1). we have the invariant relation 

I” (J’)‘_rn = yJ1-m 5 6 ( m__ * n 1 
=2t_vj (6.4) 

Here a is the so-called “configuration constant” [15]. 

Specifically. for a system of point masses gravitating according to Newton’s law we 
have s= 0. n = - 1, fn= I,$ $0 thar invariant relation (6.4) becomes .!*(I”)^ z JV? = G?, 

which coincides with the familiar result of 1151. 
Integrating (5. 5) with the aid of invariant relation (6.4). we reduce the problem of 

finding J (q) to a single quadrature, 

*=hJ--dm$C (LO= ?‘F (2 + a) 1) (6.5) 

Here c is an integration constant and i* is the reduced time. 
Equation (6.5) can be interpreted as the kinetic energy integral for the motion of a 

point of unit mass over a given trajectory with the arc coordinate s under the action of 

some local force f (s). 
In fact, writing the equation of motion 8” = j (s) , multiplying both sides by 2i, and 

integrating, we obtain 

which coincides with Eq. (6.5) if we take 

R=J, 1=t+ * Q,(s) = hs - cum + c 

Separating variables and integrating, we obtain Pas a function of / 

I* E f s dJ. 
jY-$cg -j- cons (uqfi)=hJ--aJrn fC) 

(6.6) 

ffi.7) 

Let us cite the basic results of a qualitative analysis of Eq. (6.5) in accordance with 
the familiar method of Weierstrass [16], who carried out a general qualitative invcstiga- 

tion of equations of the form (6.6). 
We denote the increasing roots of the equation @ (J) = 0 by (1 < Jt < . . . < I, 
1) Let the initial value of J, i.e. _rs, lie CO the right of i, (i.e. let lo>Js,), and let 

the initial value of the derivative (d~/d~*)~ be larger than zero. Since for f 2 Jo the 
function d, (3) is larger than zero and does not vanish, and since dl / dl* > 0, it follows 
thal I (1,) increases monotonically, varying from JO to I = + xi‘, \\I;ile tile time 1+=11* 

is eitiler finite or infinite, depending on whether the integral 

converges or diverges. 
A 

2) Let the initial value JO lie to the Ieft of all the real roots of the equation ct, (I)= 0, 
i.e. let Jo < /r,and let the derivative (dl / dP)o be larger than zero as above, Since the 
function QJ (I) > 0 does not vanish anywhere in the interval I* < J < Jr , it follows 

that dl / dr* > 0 and that f (P) increases monotonically, varying from the initial value 
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Jo to some finite value Jr,which is the smallest root of the equation CD(J) = O.The time 
P also increases monotonically, remaining finite if the root J = J1 is simple, and becom- 

ing infinitely large if the root J = II is multipIe. 

Thus, in the case of a simple root J I Jl the quantity J varies monotonically from 

the initial value Jo to reach its maximum value J = I, in the course of the finite time 

interval fr*, after which the motion is reversed,since Q, (J) = (Jt - I) Co, (I) , so that 

for J = ‘r we Obtain (dQ, (I) ,’ dJfJl = - @I%$ (I,) < 0 (@I (Jt > 0) 

With further increases in the time t* > tr+ the function J decreases monotonically, 
and in the final motion as 1* -+ $ 0~ we obtain J -, - M. 

If the root J = JI is multiple. it follows that t r* = DC and J varies monotonically 

in its final motion, approaching the value J1 as its upper bound (asymptotic motion). 
3) Let the initial value J = Jo lie between two simple roots of the equation Q, (J) =O, 

which (without limiting generality) we denote by It and I, so that Jx < Jo < Jl , and 

Qt (J) = (Js - J)(J - Jt) ‘Da fJt f% (J) > 0) 
Since II < J < J2 , since the function CD (J) is larger than zero, and since dJ / dt* 

is of fixed sign, it follows that J increases monotonically from JO to I2 if (dJ / df*)o >O, 

or decreases monotonically from Jo to JI if (dJ I dt*fo < 0. The motion reverses at the 
stopping points J = J1 and J = Jt , since the derivative dQt / dJ changes sign at these 

points. Hence, the point J executes a periodic motion, assuming its largest and smallest 
values at the points J = Ji and J = II , respectively. 

4) Let J1 < JO < I,, and let the roots I, and J, be multiple. Then, depending on the 

sign of (dJ / cJP)~ , the function J (P) in the final motion as t + 01> asymptotically 

approaches one of the roots, namely J = J, if (dJ / df*) > 0 and J = I, if (dJ/dr*)o<O. 
Let us cite some individual cases of integration of (6.5) depending on the values of 

the parameter m (5.5). Omitting the intervening computations, we shall merely set down 
the final results. 

1) Let m = 0; then by virtue of (5.5). (6.2) and (6.4) we obtain 

I = V&P i_ crt* + c, (2 + v _t rz = 0, k*“T* = 1) 

Here cr and cp are integration constants. 

2) Let m = I. This yields n = 0 , so that there is no external force field. If,more- 
over, v = 0, then Aa* =r 3 , and 

J = r/s Cof** i- C$* + Ct (Co = I/* (h - s), Cl. CI = constf 

3) Let m - 2. This case corresponds to the one-parameter group of geometric simi- 
larity transformations, 

‘It’ = kj. x=fi @+v--n=o, Ic#O) 

Introducing the value A - iit -f-&C and integrating (6.5). we obtain 

J = A sin fi(P - fo*) + It i 26 (a > 0, A > 0, A = (l/2 1) fl) 

J = A sh f--6 (t* - t,,*) -f- h / 20 @<Cf. A <O. A = -(l,Eo) i/t 

J = Ad)/-ts(Z* -lo*) -;h/2a (er<O. A>O, A=-(il”~) I/@ 

Hence. for 0 > 0 the function J remains bounded all the time, since it varies accord- 
ing to a harmonic oscillation law with the period T* = &g / fi ; for u < 0 the func- 

tion J increases without limit in the final motion as t --+ a~ . 
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For example, let us consider a conservative system with 
kinetic energy 2 and potential energy Y are of the form 

T=;j: ajqjvqj*, vzi 
?=I f-1 

Let the condition of the geometric similarity transformation be fulfilled for the system, 
so that m = 2, 2 + v - n = 0 and T = i. Invariant relation (6.4) then becomes 

k-degrees of freedom whose 

or 

1’ cQ$ i- c*q* “+. . . -f-c,g,” 
-= 
J alqlYf2 + a2g,Yf2 + . . . + akgkw2 =’ (*+2=n) 

(Cl - ata) gP + fct - aA gzn + . . . + (ck - a& gp = 0 

Since the qj are independent, we find from this that 
cl CI Ck 

-=-= 
al * ***=-G===O 

The behavior of the function J as determined by the values of the parameters i, \ 
and a can be studied with the aid of the above solutions. 

4) Let m = l/s, so that by (6.4) and (6.2) we have 

2n + v + 2 = 0, ii-an = T” 

This case,is of interest, since in the particular case of a free system of point masses 
gravitating in accordance with Newton’s law we have v = 0, n = --i , so that the 

value of the parameter m is rj2. The condition of mechanical similarity for R = - 1 
becomes jL3 = us, which, as we know, expresses Kepler’s third law in the case of central 

motion. 
Here we must distinguish among the cases h < 0, h = 0 and A > 0. 
a) Let the motion be elliptic (h < O),and let the configuration constant u be smaller 

than zero. 

= M_akF;; ;bstJtution o I 2h - fl = k COB E , introducing the notation 0X = 

1 1 - - h > 0, and integrating (6.5), we obtain Kepler’s equation for 
elliptical orbits. 2hk 

E-esinE = .If c=?I. ks= > 
(6.8) 

Here E is the eccentric anomaly: Bf is the mean anomaly, t is the eccentricity, and 
the period t* = &J, f h,’ . 1 depends on the constant energy and the config~ation con- 
stant U. 

In the case of parabolic motion (k = 0) we have 

U(ZP- 3C) -‘ ‘],a’ ( t * - lo+) (l#=C-+s ?V) (6.9) 

b) Let the motion be hyperbolic (h > O),and let the configuration constant d be 
larger than zero. 

Making the substitution a / %-vf = kchs and integrating (6.5), we obtain Kepler’s 
equation for hyperbolic orbits, 

eshs-s=-If ‘-*” >o. (6.10) 

Let us apply the above relations to the two-body problem. Converting, as usual, to the 

problem of the central motion of a, point with the reduced mass p in a Newtonian field 

with the potential Y (r) = - A I r, we write out the Lagrangian 



On the final motions of conservative systems 1021 

In the case under consideration we have v = 0, n = - 1, m = ‘1~. J = pc , and the 
configuration constant :, by virtue of the invariance of (6.4). is equal to : = VlT= 
=- A rp , so that in the case of an attracting center A > 0 and a < 0, while in the 

case of a repelling center A < 0 and a > 0. 

Turning to (6.5) and noting that v = 0, P = 2 )r2f and dl / dl = &r dr / de , after 
certain simplifications we obtain 

dr/dt=(2/)L(h+A/r--~/2~)~~~ (C = - ‘l&v) 

which coincides with the solution of [lo]. 
In perticular, in the case h < 0 and s < 0 we have 

Ifi= o/z& -kcosE=aIU(i -~COSE) 

Substituting in the values I = pi, a = - A 17 and making use of the expression for 

the major semiaxis of the ellipse a’= - A / U,we obtain Formula r = a (I - c ~0s e) 

faniliar to us from the theory df elliptical orbits. 

5)Let m=3. Then 4+2v-n=O, i.*= ti , and on integrating (6.5) we obtain: 

for elliptic motion (h <O) for a<0 and C<O , 

J = O(‘/* 1’ --oP + z) (PZ = 4hlo. pa = Cc/a) 

for hyperbolic motion (h > 0) for a> 0 and C <0 , 

J = - gy’/* ,G P I 1) (f: = 4h.b. ES = - 4C!a) 

Here p (f; gI, g,) is the Weierstrass elliptic function, g, and g, are its invariants, 

and a is an integration constant. 
6) Let m = ‘I,; then 4 + 2v -i_ 3n - 0, Pn = + , and on integrating (6.5) we obtain: 

for elliptic motion (h, = -k>O) for a<0 and C<O , 

for hyperbolic motion (h > 0) for a > 0 and C < 0 , 

Here u (2) is an elliptic integral whose inverse is the Weierstrass function x A \p (u). 

In those cases where the constant C > 0, we can use the homogeneity formula for 

Weierstrass functions U71, V (U; g,, go = Pa v (rU; ga/Pa, g~Pa) 

Hence, setting p = i (i = m), we obtain 

t (u; Ear, k ) - - 1B (iu; kt - d 

We note that for the parameter values 

m = 4 (6 + 3v - n = 0, A-” = +), m = ‘Ia (6 + 3v + 4n = 0, A-M P +) 

we can also integrate (6.5) in terms of elliptic functions. 

7. Stationary polnta. The stationary values of the function J are, by (6.5), 

the roots of the equation hJ-uP+C=O (7.0 
Denoting the corresponding values by Ji and making use of (6.5) and (6.4), we obtain 

h(l-mm)It-mC 
214 - (7.2) 

This implies that at the stationary points, where JC # 0, the function J assumes its 
minimum or maximum values depending on which of the following conditions is fulfilled: 
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h (i - m) Ji -mC>O of R(i -m)Jj-mC<O. 
If h (1 - m) J, - mC = 0 we have the case of a degenerate stationary point. 

8. Stationary :yatcma. Following the terminology of stellar systems dynamics 

[ 18 and 191, we call a system “statically stationary” if its generalized moment of inertia 
J (g) remains constant, and “quasistationary” if J (q) varies at a constant rate dJ/dt =a. 
In the latter case J is a linear function of t, i.e. J = & + b. 

The ore m 8.1. Let the associated expression for the kinetic energy T* (4, p) for 
systems (5.X) be a homogeneous function of degree (- V) in the variables qr, let 

2 + v =#= 0, and let the potential energy V (4) b e zi homogeneous function of degree 

it in the variables qj. 
Thus, if a system is statically stationary or quasistationary. then the kinetic energy T 

and the potential energy V are related by a virial expression of the form 

$+v)T=nV (8.1) 

This result follows directly from (5.3) if we make use of the energy integral. 
In particular, for v = 0 we obtain the familiar theorem on the virial [lo]. 
C or o 11 a r y 8.1. Let the conditions of Theorem 8.1 be fulfilled. A System is 

then stationary or quasistationary if and only if the integral 

Pr% + P&z f-s - + p&k = A (A = const) 
exists. 

In fact, as we infer from (5. ;?), if d = 0, then J = const and the system is stationary ; 
if A fO,then I =i at + tr (a = (2 + v) A) and the system is quasistationa~. 

The author is grateful to G. N. Duboshin for his interest in the present study. 
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ONE-DIMENSIONAL UNSTEADY MOTIONS 

OF GAS DISPLACED BY A PISTON 
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We consider the flow of a gas displaced by a piston which at some instant begins to ex- 
pand according to a power law with an exponent smaller than that corresponding to an 

intense explosion. We assume that the gas has received a finite energy prior to the begin- 
ning of motion of the piston. The energy of the gas in this case remains finite over an 
infinite time interval,so that all of the required functions are obtainable by linearization 

relative to the values occurring in the problem of an intense explosion. The solution is 
constructed by investigating the inverse problem in which a shock wave moves through 

a quiescent gas of constant density and at a pressure negligibly small as compared with 

the pressure behind it is specified. The piston expansion law is obtained by solving the 
resulting Cauchy problem. Special attention is given to the case of a cylindrical piston 
of constant radius, when the required solution contains logarithmic terms. 

The problem of motion of gas due to the expansion of a piston at a constant rate was 

solved by Sedov [l] and Taylor r2]. The more general case in which the velocity of the 
piston depends on time according to a power law was later investigated by Krasheninni- 
kova [3] and by Kochina and Mel’nikova [4]. In these studies the functions describing 
the perturbed flow fields depend on the self-similar variable only and are found by inte- 
grating a system of nonlinear ordinary differential equations. As may be seen from qua- 
litative investigation [3 and 41, the problem does not always have a solution if the piston 
motion is defined as R = ctn (where R is the coordinate and r is the time). In order for 
a solution to exist, the exponent n must satisfy the condition n > 2 / (v + 2), where the 
parameter v = i, 2, 3 for flows with plane, axial, and central symmetry, respectively. 


